238 research outputs found

    The Mechanism of Additive Composition

    Get PDF
    Additive composition (Foltz et al, 1998; Landauer and Dumais, 1997; Mitchell and Lapata, 2010) is a widely used method for computing meanings of phrases, which takes the average of vector representations of the constituent words. In this article, we prove an upper bound for the bias of additive composition, which is the first theoretical analysis on compositional frameworks from a machine learning point of view. The bound is written in terms of collocation strength; we prove that the more exclusively two successive words tend to occur together, the more accurate one can guarantee their additive composition as an approximation to the natural phrase vector. Our proof relies on properties of natural language data that are empirically verified, and can be theoretically derived from an assumption that the data is generated from a Hierarchical Pitman-Yor Process. The theory endorses additive composition as a reasonable operation for calculating meanings of phrases, and suggests ways to improve additive compositionality, including: transforming entries of distributional word vectors by a function that meets a specific condition, constructing a novel type of vector representations to make additive composition sensitive to word order, and utilizing singular value decomposition to train word vectors.Comment: More explanations on theory and additional experiments added. Accepted by Machine Learning Journa

    Controlled Generation with Prompt Insertion for Natural Language Explanations in Grammatical Error Correction

    Full text link
    In Grammatical Error Correction (GEC), it is crucial to ensure the user's comprehension of a reason for correction. Existing studies present tokens, examples, and hints as to the basis for correction but do not directly explain the reasons for corrections. Although methods that use Large Language Models (LLMs) to provide direct explanations in natural language have been proposed for various tasks, no such method exists for GEC. Generating explanations for GEC corrections involves aligning input and output tokens, identifying correction points, and presenting corresponding explanations consistently. However, it is not straightforward to specify a complex format to generate explanations, because explicit control of generation is difficult with prompts. This study introduces a method called controlled generation with Prompt Insertion (PI) so that LLMs can explain the reasons for corrections in natural language. In PI, LLMs first correct the input text, and then we automatically extract the correction points based on the rules. The extracted correction points are sequentially inserted into the LLM's explanation output as prompts, guiding the LLMs to generate explanations for the correction points. We also create an Explainable GEC (XGEC) dataset of correction reasons by annotating NUCLE, CoNLL2013, and CoNLL2014. Although generations from GPT-3 and ChatGPT using original prompts miss some correction points, the generation control using PI can explicitly guide to describe explanations for all correction points, contributing to improved performance in generating correction reasons.Comment: Work in progres

    Reducing Sequence Length by Predicting Edit Operations with Large Language Models

    Full text link
    Large Language Models (LLMs) have demonstrated remarkable performance in various tasks and gained significant attention. LLMs are also used for local sequence transduction tasks, including grammatical error correction (GEC) and formality style transfer, where most tokens in a source text are kept unchanged. However, it is inefficient to generate all target tokens because a prediction error of a target token may cause a catastrophe in predicting subsequent tokens and because the computational cost grows quadratically with the target sequence length. This paper proposes to predict a set of edit operations for the source text for local sequence transduction tasks. Representing an edit operation with a span of the source text and changed tokens, we can reduce the length of the target sequence and thus the computational cost for inference. We apply instruction tuning for LLMs on the supervision data of edit operations. Experiments show that the proposed method achieves comparable performance to the baseline in four tasks, paraphrasing, formality style transfer, GEC, and text simplification, despite reducing the length of the target text by as small as 21\%. Furthermore, we report that the instruction tuning with the proposed method achieved the state-of-the-art performance in the four tasks.Comment: Work in progres

    The Impact of Debiasing on the Performance of Language Models in Downstream Tasks is Underestimated

    Full text link
    Pre-trained language models trained on large-scale data have learned serious levels of social biases. Consequently, various methods have been proposed to debias pre-trained models. Debiasing methods need to mitigate only discriminatory bias information from the pre-trained models, while retaining information that is useful for the downstream tasks. In previous research, whether useful information is retained has been confirmed by the performance of downstream tasks in debiased pre-trained models. On the other hand, it is not clear whether these benchmarks consist of data pertaining to social biases and are appropriate for investigating the impact of debiasing. For example in gender-related social biases, data containing female words (e.g. ``she, female, woman''), male words (e.g. ``he, male, man''), and stereotypical words (e.g. ``nurse, doctor, professor'') are considered to be the most affected by debiasing. If there is not much data containing these words in a benchmark dataset for a target task, there is the possibility of erroneously evaluating the effects of debiasing. In this study, we compare the impact of debiasing on performance across multiple downstream tasks using a wide-range of benchmark datasets that containing female, male, and stereotypical words. Experiments show that the effects of debiasing are consistently \emph{underestimated} across all tasks. Moreover, the effects of debiasing could be reliably evaluated by separately considering instances containing female, male, and stereotypical words than all of the instances in a benchmark dataset.Comment: IJCNLP-AACL 202

    Set Expansion using Sibling Relations between Semantic Categories

    Get PDF
    • …
    corecore